

Integrity ★ Service ★ Excellence

AFOSR Spring Review 2013

Test and Evaluation (T&E)

4 March 2013

Dr. Michael Kendra
Program Officer
AFOSR/RTA
Air Force Research Laboratory

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 04 MAR 2013		2. REPORT TYPE		3. DATES COVE 00-00-2013	RED 3 to 00-00-2013
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER			
Test and Evaluatio	n (T&E)		5b. GRANT NUMBER		
		5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)		5d. PROJECT NUMBER			
			5e. TASK NUMBER		
			5f. WORK UNIT NUMBER		
	ZATION NAME(S) AND AE Scientific Research n,VA,22203	` '	N.	8. PERFORMING REPORT NUMB	GORGANIZATION ER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)		
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited			
13. SUPPLEMENTARY NO Presented at the A	TES FOSR Spring Revie	w 2013, 4-8 March,	Arlington, VA.		
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF	18. NUMBER	19a. NAME OF
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 28	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

2013 AFOSR SPRING REVIEW 3002T PORTFOLIO OVERVIEW

NAME: Dr. Michael Kendra

BRIEF DESCRIPTION OF PORTFOLIO:

The T&E program supports basic research which will build the foundation for future revolutionary capabilities that address the identified needs of the T&E Community.

LIST SUB-AREAS IN PORTFOLIO:

The T&E Program encompasses five broadly-defined, overlapping thrust areas:

- Hypersonics
- Aerodynamics
- Sensors and Electromagnetics
- Information and Data Fusion
- Enabling Materials.

T&E Spring Review Summary

T&E: The Science of Test

- 2009 Last T&E Spring Review
- AFOSR Technical Strategic Plan
- Technology push versus pull role of PM's and TD's
- AFRL role LRIR, STTR, tech transition
- T&E Thrust Teams strengthen and expand
- TCTTA Test Center Technology Transition Advisors

Partnerships and Collaborations

- AFTC, 412th TW, 96th TW, AEDC, RCC
- AFRL RY, RW, RX, RI
- OSD TRMC T&E/S&T Program
- UK DSTL T&E
- Ultra High Performance Concrete HSST, AFRL/RW, Army ERDC, DTRA, AFOSR IO
- DoD Environmental Security Technology Certification Program (ESTCP)

AFOSR Test and Evaluation Overview

MOTIVATION

- Future air, space and cyber platforms will have integrated materials, sensors and information systems that will exceed present day T&E capabilities
- AF Test Centers will require new technologies to fulfill their mission –
 - The speed at which data must be processed and exploited has dramatically increased.
 - T&E capabilities must now interweave computational tools into traditional physical testing and analysis capabilities.

STRATEGY

- Creation of a network of AFRL S&E partners to support T&E future requirements.
 - Exploration of parallel scalable computing/quantum computing using advanced fluid flow algorithms
 - Transition of new materials that run hotter and last longer to enhance existing test facilities.
 - Implementation of techniques for nano-scale machine, sensor, and electronics measurement and quality assessment

5 Thrust Areas focused on Test Center Missions

PAYOFF

- Advanced Test Center capabilities for better, faster, more effective T&E
- Superior intramural T&E capabilities to support future AF systems
- Opportunity to recruit and train the next generation T&E workforce

AFOSR T&E FY12 Investment

T&E FY12 Investment

T&E FY13 Investment

3 CORE 11 STTR Phase 1 8 LRIR 13 STTR Phase 2

CORE – University Grant STTR – Small Business Technology Transfer LRIR (Labtask) – Laboratory Research Independent Research

T&E FY12 Thrust Area Investment

AFOSR Mission and Strategic Plan

AFOSR discovers, shapes, and champions basic science to profoundly impact the future Air Force

AFOSR Technical Strategic Plan

Strategic Goal 1: *Identify opportunities* for significant scientific advancements and breakthrough research here and abroad

Strategic Goal 2: Rapidly bring to bear the right researchers and resources on these opportunities in the interest of fostering revolutionary basic research for Air Force needs

Strategic Goal 3: **Enable** the Air Force to exploit these opportunities at the appropriate time **transitioning revolutionary science** to DoD and industry

TODAY'S BREAKTHROUGH SCIENCE FOR TOMORROW'S AIR FORCE

Distribution A: Approved for public release; distribution is unlimited

Air Force T&E Organization

AFOSR I 61-7 revised to allow AFRL TD collaborative funding to USAFA, AFIT, and AFMC Test Centers

AFOSR Test & Evaluation Portfolio

Management Structure

David Stargel - AFOSR

STAKEHOLDERS

Joan Fuller- AFOSR, Robert Arnold- 96TW, Ed Kraft - AEDC, Eileen Bjorkman - AFTC

Guidance

Plan Execution and Coordination

AFOSR

96TW

AEDC

AFTC

Michael Kendra Jeong (Min) Kim Scott Waltermire

Jim Deckert

Reporting

Thrust Teams

Information & Data Management & Fusion

Tristan Nguyen, AFOSR/RSL Bob Bonneau, AFOSR/RSL Andy Noga, AFRL/RI Jim Deckert, AFFTC Misty Blowers, AFRL/RI Min Kim. 96TW Stanley Borek, AFRL/RI

Aerodynamics & Aeroelasticity

LEAD Doug Smith, AFOSR/RSA David Stargel, AFOSR/RSA Scott Morton, 96TW Stan Cole, NASA Chuck Harris, 812 TSS Jason Lechniak. 812 TSS Crystal Pasiliao.

AFRL/RW

Hypersonics

LEAD John Schmisseur, AFOSR/RSA Charles Jones. **AFTC** John Lafferty, AEDC Chris Leone, AEDC Alex Henning, AEDC Ed Tucker, OSD TRMC T&E/S&T Tony Schauer, HSTT

Sensors & **Electromagnetics**

LEAD Arje Nachman, AFOSR/RSE Greg Czarnecki, 96TW Michael Johnson, 96TW Andy Keipert, 96TW

Enabling Materials

Les Lee, AFOSR/RSA Scott Waltermire, AEDC John Jones, AFRL/RX Clint Hooser, Holloman High Speed Test Track Michael Bohun, 96TW

Thrust Area Teams

- Comprised of subject matter experts from each agency
- Develop and regularly assess the scientific objectives in each Thrust Area

Distribution A: Approved for public release; distribution is unlimited

Hypersonics Workforce Revitalization UMd and AEDC Tunnel 9 PI Professor Ken Yu University of Maryland

Focused Schlieren

- Multi-year effort supported by AFOSR T&E and Hypersonics Programs, OSD T&E/S&T HSST
- 3+ faculty, 10-12 students (grad and undergrad)
- Offices and lab co-located at Tunnel 9 in White Oak MD
- Take advantage of unused capacity and piggybacking
- Focus on hypersonics workforce revitalization
- Students starting to exit pipeline (DARPA, Naval Air Warfare Center)

Faculty Workshops

Research Opportunities Workshops

26-28 June 2012 AFFTC Edwards Air Force Base, CA

24-26 July 2012 46 TW Eglin Air Force Base, FL

More than 70 research professors and 5-10 students

Presentations

AF T&E leadership and workforce, OSD TRMC T&E/S&T, AFRL, AFIT, U Md, NASA,

HR

Site and facility visits

T&E Collaboration - Rapid Prototyping and Risk Sharing (RAPARS)

Goal – rapid tech transition to Test Centers

- Early basic research risk assumed by AFOSR (6.1)
- Early applied research risk assumed by AFRL (6.2-6.3)
- Advanced applied research risk assumed by OSD T&E/S&T (6.3+)

AFOSR AFRL 6.2-6.3

6.3-6.6
OSD

Tunable Diode Laser Absorption Spectroscopy (TDLAS) Temperature Sensor for High Pressure and High Temperature Air

- PI Professor Ron Hanson (Stanford U)
- Dr. Mike Brown AFRL/RQHS
- Ed Tucker, Wade Burfitt, Carrie Reinholtz AEDC

Mathematical Model Based Control System for Wind Tunnels

Dr. Alan Cain, Innovative Technology Applications Company, abcain@itacllc.com PI Dr. Mark Rennie, University of Notre Dame, rrennie@nd.edu

Objective

To develop accurate mathematical models for improved control and simulation of wind tunnels.

Approach

- > Formulate mathematical models to simulate the wind-speed and temperature behavior of wind tunnels by applying the conservation equations for 1-D constant-property flow.
- Acquire a database of wind-tunnel operating conditions, and develop methods to compute parameters required by the mathematical model from the database.
- > Use neural networks to organize and manipulate the database
- Develop error-management methods to protect against noise and signal failure, and integrate the approach into the control system of a wind tunnel.

Mathematical Modeling

- 1) Divide wind-tunnel circuit into sections.
- Apply conservation of mass, momentum, energy, head-loss, plus auxiliary equations to each component.

- Combine equations in the sense that the flow exiting each section is equal to the flow entering the section downstream.
- Time step through the solution, or eliminate timederivative terms and compute steady-state solution directly.

Neural Networks (NN)

- > NN are ideal for organizing large databases and for "extracting" complicated relationships from those databases.
- e.g., a NN is used to compute the model drag area C_DS from routinely-measured data. This idea was developed in Phase I and will be experimentally validated in Phase II.
- In Phase II, NN will also be used to test for signal failure, and to compute all data required by the mathematical model for model-based control of the wind tunnel.

Phase II Progress (to April 2012)

- > Mathematical models for wind speed and temperature behavior have been completed and the test-bed wind tunnel has been instrumented for good control.
- > A control demonstration is tentatively planned for the mid-term review at the end of 2012.

Model-based Control

- Mathematical model is used to predict required control inputs (i.e. to fan and heat exchanger in this case) for improved control of test-section flow conditions.
- > Data from wind tunnel sensors are continually acquired during testing and stored in a database, which is used to update neural networks and monitor tunnel performance.

Distribution A: Approved for public release; distribution is unlimited

AFRL Memristor Research

PI Clare Thiem and Dr. Bryant Wysocki AFRL/RI

Model Development for a Solid State Neural Device Based Energy Management System

McKinley Climatic Laboratory, Eglin AFB

Operates 24/7/365
-65 F to 165 F
Manual Control Room Ops
Rotating Shifts
Largest Power Consumer
Last Major Upgrade 1990's

Push from AFOSR
Push from STTR contractor
Push from Norte Dame
Push from AFRL/RI
Pull from Eglin

Potential partners include the Environmental Security Technology Certification Program (ESTCP)

Highly Efficient Powering of Embedded Sensors

Highly Efficient Powering of Embedded Sensors

- Professor Stavros Georgakopoulos, Florida International University
- AFOSR HBCU/MI Program

• Strongly Coupled Magnetic Resonance (SCMR) Challenges

- Model development
- Antennae geometry for maximum efficiency
- Conductor material selection
- Frequency
- Scaling and miniaturization

• T&E Payoff

- Wireless powering of instruments during test
- Transmission through most materials (metals, composites, concrete)
- Control signal and data transmission
- Weight potential to eliminate miles of wiring during test
- Time potential to reduce test preparation time

AFRL PI and Test Center Technology Transition Advisor Collaboration

PI Dr. Crystal Pasiliao AFRL/RW
TCTTA Jason Lechniak 412 TW Edwards AFB
Characterization Of Aero-Structural Interaction (CFD)
Expanded: technical contribution

PI Dr. Don Dorsey AFRL/RX
TCTTA Dr. Jim Nichols AEDC
Tools for Nanoelectronics T&E
Space Environment Chamber test
Andy Keipert 96 TW Eglin AFB – EMP test

PI Dr. Kris Kim AFRL/RY
TCTTA Jim Deckert 412 TW Edwards AFB
Bistatic Radar Cross-Section
Benefield Anechoic Chamber test

PI Tony Quach AFRL/RY
TCTTA Ed Utt 96 TW Eglin AFB
High Power & Efficient Waveform-Agile Transmitter
Tom Young 412 TW Edwards AFB - T&E/S&T Spectrum Efficiency

Thank You!

2013 AFOSR SPRING REVIEW 3002T PORTFOLIO OVERVIEW

- Novel measurement techniques, materials, and instruments that enable accurate, rapid, and reliable test data collection
- Accurate, fast, robust, integratable models of the aforementioned that reduce requirements to test or help provide greater understanding of test results
- Advanced algorithms and computational techniques that are applicable to new generations of computers
- Advanced algorithms and test techniques that allow rapid and accurate assessment of devices and software to cyber vulnerability
- New processes and devices that **increase bandwidth utilization** and allow rapid, secure transfer of test data to control facilities during test
- Advanced mathematical techniques that improve design of experiment or facilitate confident comparison of similar but disparate tests
- Advanced models of test equipment and processes that improve test reliability and efficiency
- Basic research in other T&E technical areas that advances the science of test and contributes to the development of knowledge, skills, and abilities (KSA) of the established or emerging AF T&E workforce

STATUS

NEW INSIGHTS

Characterization Of Aero-Structural Interaction Flow-Field Physics Pl Dr. Crystal L. Pasiliao AFRL/RW

Existing theories are insufficient to provide analytical means for direct characterization of aero-structuralinduced interactions, such as Limit Cycle Oscillation (LCO).

Methods do not account for aerodynamic and stiffness nonlinearities: therefore missing the fundamental physics bounding the flutter mechanism.

Limit Cycle Oscillations (LCO's) are selfsustained oscillations of an airframe that achieve a constant amplitude for stabilized flight conditions.

- The fundamental physics of LCO cannot be characterized by direct theoretical methods.
- Nonlinear behavior requires development of pertinent nonlinear analysis methods.
- Classical linear flutter analyses fail to provide insight into LCO behavior (e.g. onset speed and response amplitude).
- Cannot account for aerodynamic and structural nonlinearities (bounding mechanisms).
- Flight testing is only way to assess LCO characteristics.

HOW IT WORKS:

• Utilize high fidelity unsteady fluidstructure reaction/ interaction (FSR/FSI) CFD solutions of full-scale airframes on HPC resources.

MAIN ACHIEVEMENTS:

- Unsteady, viscous, rigid-body FSR sims show evidence of shock oscillations. shock-induced separation, & phase lags.
- Unsteady, Euler, FSI sims predict accurate LCO onset speeds with "slowly diverging flutter" behavior.
- Lissajous illustrates non-sinusoidal tracking of C_p w.r.t. A/C motion.
- Wavelets key in identifying localized frequency differences at any point in time

Planned Impact

- Successful development of advanced numerical technologies to progress the fundamental understanding of physics associated with and driving aerostructural interactions (ASI).
- Use of high fidelity aerodynamic characterization to quickly, robustly and accurately predict ASI driven events.
- Increased agility, maneuverability, and lethality for weapon development.

Research Goals

- New computational-based method capable of characterizing nonlinear ASI phenomena induced by weapons configurations on fighter aircraft.
- Characterization of flow physics that interact with the structure and contribute to aeroelastic mechanism.
- Feedback into the design of weapons to either avoid or exploit the mechanism.
- Provide the ability to "virtually fly" missions before actual tests.

Tools for Test and Evaluation of Emerging Nanoelectronics PI Dr. Donald L. Dorsey AFRL/RX

Future military systems will depend on high density electronics with sub 100nm feature size (nanoelectronics) Current NDE techniques will not be adequate due to:

• Limited spatial resolution • Lack of physical understanding of materials degradation behavior in operating devices • Relevant defects not always known (structure, properties, behavior); hard to measure (buried under multiple layers)

Tools exist to develop NDE approach to assess emerging nanoelectronics:

- Electronics operational models exist but don't include degradation mechanisms
- Can use these models to correlate NDE measurements to damage buried inside nanoelectronic devices (not accessible to direct measurement)
- Missing piece: nanoscale damage detection to discover & model degradation mechanisms
- Scanning Probe Microscopy (SPM) and microoptical techniques can provide this

NDE – Thermoreflectance-based thermal transient imaging of an operating GaN power transistor with 50ns temporal resolution

MAIN ACHIEVEMENTS:

GaN Transistor cross-section created by a combination of polishing and 3-beam Ar ion milling

AFM Topology of GaN Transistor

• Routinely cleaving devices by multiple methods (mechanical, polishing, 3-beam ion milling) to surface qualities adequate for useful SPM imaging • Preliminary surface potential measurements made including impact of electrically biasing the device • Preliminary microRaman measurements made on device cross-sections

Surface Potential map for biased GaN transistor

SHORT TERM GOALS:

- Optimize cleaving technique for surface quality Challenge: smearing of metal contacts across the surface
- Explore further surface optimization using low-energy argon ion mill
- Validate surface quality using surface potential and electrostatic force microscopy (EFM)
- Use EFM to test for evidence of charge build-up in the GaN buffer layer as suggested in some models as a potential device degradation mechanism
- Solve issues with the thermal stability of the crosssectioned sample for micro-Raman and micro-PL measurements

Current Impact

- Availability of device cross-sections and nanoscale characterization techniques are sparking joint studies of degradation mechanisms with U. Florida, Ga.Tech, UC Santa Cruz/Purdue and others
- Sample preparations techniques developed are broadly applicable for other electronic device and materials technologies (beyond GaN High Electron Mobility Transistors (HEMTs)

Long Term Goals

- Extend work to other SPM modes (Scanning Microwave Microscopy, Kelvin Probe Microscopy)
- Perform systematic studies of damage accumulation during device operation and model the mechanism
- Incorporate damage models into in-house device simulator
- Correlate experimental and model results with NDE measurements
- Electrical (I-V curves, transconductance, etc.)
- Thermal (Raman, IR Camera)
- Optical (Photoemission, Photoluminescence)

Planned Impact

- Detailed, physically & chemically accurate models combined with NDE measurements to enable real-time state assessment of remaining useful lifetime of nanoelectronics
- Eliminate/dramatically reduce anomalies in fielded electronics; Improve logistics

High Power/Efficient Waveform Agile Transmitter Technology for Multi-Function Apertures Pl Tony Quach AFRL/RY

Multi-Function Transmitter **Architecture**

Objective:

- To take advantage of waveform diversity and power scaling technologies required for next generation sensor needs.
- Fundamental investigation of the foundational theory and limitations governing adaptive and efficient control of high power/efficient transmitter technology.
- PI: Tony Quach (937) 528-8903
 AFRL/RYDI, Tony.Quach@wpafb.af.mil
- Co-PI: Christopher Bozada (937) 528-8685
 AFRL/RYD, Christopher.Bozada@wpafb.af.mil

Approach:

- Develop the theoretical understanding for multi-phase digital signal reconstruction with multi-phase LO mixing in power DAC/Mixer architecture to cancel nonlinearity, enable wide bandwidth and digital phase shifting
- Develop the theoretical understanding for pulse-width modulated switch-mode power amplifier to enable highly efficient / linear transmitter technology
- Develop models for reconfigurable GaN devices to enable power scaling for waveform agile operation
- Transition knowledge and designs to AFRL's complementary 6.2 funded demonstration of a waveform agile transmitter

Funding: for 3-Years

Task Definition:

Task 1	Multi-phase digital signal reconstruction theoretical exploration
	mand prices digital eight recent determined exploration
Task 2	Pulse width modulated switch-mode PA theoretical exploration
Task 3	Reconfigurable GaN transistor core models for power scaling
Task 4	Waveform Agile transmitter demonstration

Advanced Computational Methods for Study of Electromagnetic Compatibility PI Professor Catalin Turc NJIT and Mathematical Systems & Solutions

Highly Scalable **Computational-Based Engineering Algorithms** for Emerging Parallel Machine Architectures

- PI Dimitri Mavriplis and Jay Sitaraman
- University of Wyoming and Scientific Simulations LLC

Task 1: Investigate hierarchical parallel partitioning strategies

Task 2: Demonstrate combined space-time parallelism (timespectral or other)

Task 3: Implement parallel CSD approaches

Task 4: Demonstrate efficient parallel scalability for fully coupled CFD/CSD problem

Task 5: Unified programming model for GPU/CPU architectures

Space-time MPI for time spectral method

GPU speedup for unstructured mesh solver

Scalability of CFD solver @4000 cpus

2000 NCPUS

Scalability of CFD/CSD solver using beam model Distribution A: Approved for public release: distribution is unlimited on AePW model (HIRENASD)

Nonintrusive Diagnostics for Off-Body Measurements in Flight Experiments

Dr. Alan Cain, Innovative Technology Applications Company, abcain@itacllc.com PI Dr. Mark Rennie, University of Notre Dame, rrennie@nd.edu

Objective

Develop new methods for in-flight, nonintrusive measurements of off-body, aerothermodynamic flow parameters.

Approach

Determine flow parameters from the optical aberrations produced by density variations in the flow, i.e. from "aero-optic" measurements. Generate a reference light source using the emitted light from a laser-induced breakdown (LIB) spark for a fully nonintrusive method. The region of high-temperature air generated by the LIB spark is also used for computation of detailed flow velocities using a "thermal tufting" approach.

Concept Instruments

Aero-optic measurements

"Thermal tufting"

Detailed Flowfield Measurement Example

Determined from regional cross-correlation of sequential wavefront measurements through a compressible shear layer

Features

Measurement

Aero-optic measurements of boundary layer

Regional cross-correlation of two sequentially-measured aero-optic wavefronts

Convection of high-temperature air created by LIB spark

Intensity of LIB spark - Local air pressure

Flow Parameter

Boundary-layer thickness, freestream density, mean freestream velocity

Detailed velocity flow field (for primarily 2-D flows)

Local flow velocity

Spectrum of LIB spark — Chemical composition of flow

Sampling rate using LIB spark is ~200 Hz, but optical measurements up to ~100 kHz or more can be achieved using a continuous LED beacon.

ease: distribution is unlimited

AFOSR STTR Phase I Project FA9550-12-C-0045 (topic AF11-BT25) Computational Model for Electrode Erosion by High-Pressure Moving Arcs

PI: Dr Vladimir Kolobov: CFD Research Corporation – 215 Wynn Drive, Suite 501, Huntsville, AL 35805 Academic Partner: Dr A.Fridman, Dr A.Rabinovich, Drexel Plasma Institute

Problem & Technical Objectives

- Arc heaters provide high-temperature airflows needed for simulating extreme conditions for space vehicles and hypersonic weapon systems
- This project aims to develop theory and validated computational model of electrode erosion by highpressure moving arcs
- Understand effects of different factors on material removal rates to help increasing lifetime of arc heaters by improved electrode design

gliding arc

Simulation of moving arc with dynamically adaptive Cartesian mesh

Challenges & Innovations

- Physics of arc attachment and electrode erosion by high-pressure moving arcs is poorly understood
- Existing models and computational tools do not take into account all the important factors
- CFDRC Solution: high-fidelity physical models and dynamically adaptive mesh technology for accurate and efficient simulations of arc motion and electrode erosion by the plasma
- Unified multi-phase solver for solid, liquid, gas, and plasma using different physical models for different phases
- Validate and fine-tune models vs experiments

Commercialization

- New tool will help better understand electrode erosion process by high-pressure moving arcs
- Help AEDC extend the run time and increase usable lifetime of arc heaters in hypersonic facilities
- Market new tool's capabilities to DoD and NASA facilities using arc heaters for hypersonic testing and other applications
- Offer improved capabilities for simulating multi-phase processes involving gas, plasma, solid and liquid, proven difficult to measure and control experimentally.

Mission

AFOSR T&E Thrust Teams

Aero	AFOSR
	AFOSR
	96 TW
	NASA
	AFFTC
	AFFTC
	AFRL
Mat	AFOSR
	AFOSR
	AEDC
	AFRL
	96 TW

Hyper	AFOSR
	AFFTC
	AEDC
	AEDC
	AEDC
	AEDC
	96 TW
I&DM&F	AFOSR
	AFOSR
	AFRL
	AFFTC
	AFRL
	96 TW
	AFRL
Sensors	AFOSR
	96 TW
	96 TW
	96 TW

AF Workforce Pipelines

